Chaotic Time Series Prediction with Neural Networks - Comparison of Several Architectures
نویسندگان
چکیده
This paper presents experimental comparison between selected neural architectures for chaotic time series prediction problem. Several feed-forward architectures (Multilayer Perceptrons) are compared with partially recurrent nets (Elman, extended Elman, and Jordan) based on convergence rate, prediction accuracy, training time requirements and stability of results. Results for chaotic logistic map series presented in the paper indicate that prediction accuracy of MLPs with two hidden layers is superior to other tested architectures. Although potential superiority of MLPs needs to be confirmed on other chaotic time series before any general conclusions can be drawn, it is conjectured here that on the contrary to the common beliefs in several cases feed-forward nets may be better suited for short-term prediction task than partially recurrent nets. It is worth noting that significant improvement in prediction accuracy for all tested networks was achieved by rescaling the data from interval (0,1) to (0.2, 0.8). Moreover, it is experimentally shown that with a proper choice of learning parameters all tested architectures produce stable (repeatable) results.
منابع مشابه
Application of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کامل